
Source: www.csitnepal.com Page 1

Chapter 1

Overview of Object Oriented Programming (OOP)

Procedural Programming and Issues with Procedural

Programming

Pascal, C, BASIC, FORTRAN, and similar languages are procedural languages. A

program in a procedural language is a list of instructions and each instruction tells the

computer to do something. To write a program, a programmer creates a list of

instructions, and the computer carries them out. No other organizing principle or

paradigm is needed for writing programs. Later, the concepts of functions and

modules were introduced as a part of structured programming to make large programs

more comprehensible. Some issues with procedural programming are:

 Problems with Structured Programming: As programs grow larger, even

structured programming approach begins to show signs of strain. No matter

how well the structured programming approach is implemented, the project

becomes too complex, the schedule slips, more programmers are needed, and

costs skyrocket.

 Data Undervalued: Data is given second-class status in the organization of

procedural languages. A global data can be corrupted by functions. Since

many functions access the same global data, the way the data is stored

becomes critical.

 Relationship to the Real World: Procedural programs are often difficult to

design because their chief components – functions and data structures – don’t

model the real world very well.

 New Data Types: It is difficult to create new data types with procedural

languages. Furthermore, most Procedural languages are not usually extensible

and hence procedural programs are more complex to write and maintain.

Structured Programming

Structured programming (sometimes known as modular programming) is a subset of

procedural programming that enforces a top-down design model, in which developers

map out the overall program structure into separate subsections to make programs

more efficient and easier to understand and modify. A defined function or set of

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 2

similar functions is coded in a separate module or sub-module, which means that code

can be loaded into memory more efficiently and that modules can be reused in other

programs. In this technique, program flow follows a simple hierarchical model that

employs three types of control flows: sequential, selection, and iteration.

Almost any language can use structured programming techniques to avoid common

pitfalls of unstructured languages. Most modern procedural languages include features

that encourage structured programming. Object-oriented programming (OOP) can be

thought of as a type of structured programming, uses structured programming

techniques for program flow, and adds more structure for data to the model. Some of

the better known structured programming languages are Pascal, C, PL/I, and Ada.

Object-oriented Programming

The fundamental idea behind object-oriented programming is to combine or

encapsulate both data (or instance variables) and functions (or methods) that operate

on that data into a single unit. This unit is called an object. The data is hidden, so it is

safe from accidental alteration. An object’s functions typically provide the only way

to access its data. In order to access the data in an object, we should know exactly

what functions interact with it. No other functions can access the data. Hence OOP

focuses on data portion rather than the process of solving the problem.

An object-oriented program typically consists of a number of objects, which

communicate with each other by calling one another’s functions. This is called

sending a message to the object. This kind of relation is provided with the help of

communication between two objects and this communication is done through

information called message. In addition, object-oriented programming supports

encapsulation, abstraction, inheritance, and polymorphism to write programs

efficiently. Examples of object-oriented languages include Simula, Smalltalk, C++,

Python, C#, Visual Basic .NET and Java etc.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 3

Object-Oriented Concepts

The basic concepts underlying OOP are: Class, Object, abstraction, encapsulation,

inheritance, and polymorphism.

 Abstraction: Abstraction is the essence of OOP. Abstraction means the

representation of the essential features without providing the internal details and

complexities. In OOP, abstraction is achieved by the help of class, where data and

methods are combined to extract the essential features only. Encapsulation:

Encapsulation is the process of combining the data (called fields or attributes) and

functions (called methods or behaviors) into a single framework called class.

Encapsulation helps preventing the modification of data from outside the class by

properly assigning the access privilege to the data inside the class. So the term

data hiding is possible due to the concept of encapsulation, since the data are

hidden from the outside world.

 Inheritance: Inheritance is the process of acquiring certain attributes and

behaviors from parents. For examples, cars, trucks, buses, and motorcycles inherit

all characteristics of vehicles. Object-oriented programming allows classes to

inherit commonly used data and functions from other classes. If we derive a class

(called derived class) from another class (called base class), some of the data and

functions can be inherited so that we can reuse the already written and tested code

in our program, simplifying our program.

 Polymorphism: Polymorphism means the quality of having more than one form.

The representation of different behaviors using the same name is called

polymorphism. However the behavior depends upon the attribute the name holds

at particular moment.

Advantages of Object-oriented Programming

Some of the advantages are:

 Elimination of redundant code due to inheritance, that is, we can use the same

code in a base class by deriving a new class from it.

 Modularize the programs. Modular programs are easy to develop and can be

distributed independently among different programmers.

 Data hiding is achieved with the help of encapsulation.

 Data centered approach rather than process centered approach.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 4

 Program complexity is low due to distinction of individual objects and their

related data and functions.

 Clear, more reliable, and more easily maintained programs can be created.

Object-based Programming

The fundamental idea behind object-based programming is the concept of objects

(the idea of encapsulating data and operations) where one or more of the following

restrictions apply:

1. There is no implicit inheritance

2. There is no polymorphism

3. Only a very reduced subset of the available values are objects (typically the GUI

components)

Object-based languages need not support inheritance or subtyping, but those that do

are also said to be object-oriented. An example of a language that is object-based but

not object-oriented is Visual Basic (VB). VB supports both objects and classes, but

not inheritance, so it does not qualify as object-oriented. Sometimes the term object-

based is applied to prototype-based languages, true object-oriented languages that do

not have classes, but in which objects instead inherit their code and data directly

from other template objects. An example of a commonly used prototype-based

language is JavaScript.

Output Using cout

The keyword cout (pronounced as ‘C out’) is a predefined stream object that

represents the standard output stream (i.e monitor) in C++. A stream is an abstraction

that refers to a flow of data.

The << operator is called insertion or put to operator and directs (inserts or sends) the

contents of the variable on its right to the object on its left. For example, in the

statement cout<<"Enter first value:"; the << operator directs the string constant

“Enter first value” to cout, which sends it for the display to the monitor.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 5

 Input with cin

The keyword cin (pronounced ‘C in’) is also a stream object, predefined in C++ to

correspond to the standard input stream (i.e keyword). This stream represents data

coming from the keyboard.

The operator >> is known as extraction or get from operator and extracts (takes) the

value from the stream object cin its left and places it in the variable on its right. For

example, in the statement cin>>first;, the >> operator extracts the value from cin

object that is entered from the keyboard and assigns it to the variable first.

Cascading of I/O operators

We can use insertion operator (<<) in a cout statement repeatedly to direct a series of

output streams to the cout object. The streams are directed from left to right. For

example, in the statement cout<<Sum=”<<x + y;, the string “Sum=” will be directed

first and then the value of x +y.

Similarly, we can use extraction operator (>>) in a cin statement repeatedly to extract

a series of input streams from the keyboard and to assign these streams to the

variables, allowing the user to enter a series of values. The values are assigned from

left to right. For example, in the statement cin>>x>>y;, the first value entered will be

assigned to the variable x and the second value entered will be assigned to variable y.

Manipulators

Manipulators are the operators used with the insertion operator (<<) to modify or

manipulate the way data is displayed. The most commonly used manipulators are

endl, setw, and setprecision.

The endl Manipulator

This manipulator causes a linefeed to be inserted into the output stream. It has the

same effect as using the newline character ‘\n’. for example, the statement

cout<<First value =”<<first<<endl<<Second value =”<<second;

will cause two lines of output.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 6

The setw Manipulator

This manipulator causes the output stream that follows it to be printed within a field

of n characters wide, where n is the argument to setw(n). The output is right justified

within the field. For example,

cout<<setw(11)<<"Kantipur"<<endl <<setw(11)<<"Engineering"<<endl

<<setw(11)<<"College";

Output:

 Kantipur

Engineering

 College

The setprecision Manipulator

This manipulator sets the n digits of precision to the right of the decimal point to the

floating point output, where n is the argument to setprecision(n). For example,

float a = 42.3658945, b = 35.24569, c = 58.3214789, d = 49.321489;

cout<<a<<endl <<setprecision(3)<<b<<endl<<c<<endl<<setprecision(2)<<d;

Output:

42.365894

35.246

58.321

49.32

Note: The header file for setw and setprecision manipulators is iomanip.h.

Reference Variable

Reference variable is an alias (another name) given to the already existing variables of

constants. When we declare a reference variable memory is not located for it rather it

points to the memory of another variable.

Consider the case of normal variables

int a=10 200

int a=b

 300

 10 a

 10 b

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 7

Consider the case of reference variables

 int a=10 200

int &a=b

Type Conversion

There are two types of type conversion: automatic conversion and type casting.

Automatic Conversion (Implicit Type Conversion)

When two operands of different types are encountered in the same expression, the

lower type variable is converted to the type of the higher type variable by the

compiler automatically. This is also called type promotion. The order of types is given

below:

Data Type Order

long double (highest)

double

float

long

int

char (lowest)

Type Casting

Sometimes, a programmer needs to convert a value from one type to another in a

situation where the compiler will not do it automatically. For this C++ permits

explicit type conversion of variables or expressions as follows:

(type-name) expression //C notation

type-name (expression) //C++ notation

For example,

int a = 10000;

int b = long(a) * 5 / 2; //correct

int b = a * 5/2; //incorrect (can you think how?)

 10 a

b

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 8

Chapter 2

Function

Default Arguments
When declaring a function we can specify a default value for each of the last

parameters which are called default arguments. This value will be used if the

corresponding argument is left blank when calling to the function. To do that, we

simply have to use the assignment operator and a value for the arguments in the

function declaration. If a value for that parameter is not passed when the function is

called, the default value is used, but if a value is specified this default value is ignored

and the passed value is used instead. For example:

// default values in functions

#include <iostream>

using namespace std;

int divide (int a, int b=2)

{

int r;

r=a/b;

return (r);

}

int main ()

{

cout << divide (12);

cout << endl;

cout << divide (20,4);

return 0;

}

As we can see in the body of the program there are two calls to function divide. In the

first one:

divide (12)

We have only specified one argument, but the function divide allows up to two. So

the function divide has assumed that the second parameter is 2 since that is what we

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 9

have specified to happen if this parameter was not passed (notice the function

declaration, which finishes with int b=2, not just int b). Therefore the result of this

function call is 6 (12/2).

In the second call:

divide (20,4)

There are two parameters, so the default value for b (int b=2) is ignored and b takes

the value passed as argument, that is 4, making the result returned equal to 5 (20/4).

Inline Functions

Function call is a costly operation. During the function call it’s execution our system

takes overheads like: Saving the values of registers, Saving the return address,

Pushing arguments in the stack, Jumping to the called function, Loading registers with

new values, Returning to the calling function, and reloading the registers with

previously stored values. For large functions this overhead is negligible but for small

function taking such large overhead is not justifiable. To solve this problem concept

of inline function is introduced in c++.

The functions which are expanded inline by the compiler each time it’s call is

appeared instead of jumping to the called function as usual is called inline function.

This does not change the behavior of a function itself, but is used to suggest to the

compiler that the code generated by the function body is inserted at each point the

function is called, instead of being inserted only once and perform a regular call to it,

which generally involves some additional overhead in running time.

Example:

 #include <iostream.h>

 #include<conio.h>

 inline void sum(int a int b)

 {

 int s;

 s= a+b;

 cout<<”Sum=”<<s<<endl;

 }

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 10

 Void main()

 {

 clrscr();

 int x, y;

 cout<<”Enter two numbers”<<endl;

 cin>>x>>y

 sum(x,y);

 getch();

 }

Here at the time of function call instead of jumping to the called function, function

call statement is replaced by the body of the function. So there is no function call

overhead.

Overloaded functions
In C++ two different functions can have the same name if their parameter types or

number are different. That means that you can give the same name to more than one

function if they have either a different number of parameters or different types in their

parameters. This is called function overloading. For example:

// overloaded function

#include <iostream>

int mul (int a, int b)

{

 return (a*b);

}

float mul (float a, float b)

{

 return (a*b);

}

int main ()

{

 int x=5,y=2;

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 11

 float n=5.0,m=2.0;

 cout << mul (x,y);

 cout << "\n";

 cout << mul(n,m);

 cout << "\n";

 return 0;

}

In the first call to “mul” the two arguments passed are of type int, therefore, the

function with the first prototype is called; This function returns the result of

multiplying both parameters. While the second call passes two arguments of type

float, so the function with the second prototype is called. Thus behavior of a call to

mul depends on the type of the arguments passed because the function has been

overloaded.

Notice that a function cannot be overloaded only by its return type. At least one of its

parameters must have a different type.

Arguments passed by value and by reference

In case of pass by value, Copies of the arguments are passed to the function not the

variables themselves. For example, suppose that we called our function addition using

the following code:

// function example

#include <iostream>

int addition (int a, int b)

{

 int r;

 r=a+b;

 return (r);

}

int main ()

{

 int z;

 int x=5, y=3;

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 12

 z = addition (x,y);

 cout << "The result is " << z;

 return 0;

}

What we did in this case was to call to function addition passing the values of x and y,

i.e. 5 and 3 respectively, but not the variables x and y themselves.

When the function addition is called, the value of its local variables a and b become 5

and 3 respectively, but any modification to either a or b within the function addition

will not have any effect in the values of x and y outside it, because variables x and y

were not themselves passed to the function, but only copies of their values at the

moment the function was called.

In case of pass by reference, Address of the variables (variable itself) not copies of the

arguments are passed to the function. For example, suppose that we called our

function addition using the following code:

// function example

#include <iostream>

int addition (int &a, int &b)

{

 int r;

 r=a+b;

 return (r);

}

int main ()

{

 int z;

 int x=5, y=3;

 z = addition (x,y);

 cout << "The result is " << z;

 return 0;

}

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 13

What we did in this case was to call to function addition passing the variables x and y

themselves (not values 5 and 3) respectively.

When the function addition is called, the value of its local variables a and b points to

the same memory location respectively, therefore any modification to either a or b

within the function addition will also have effect in the values of x and y outside it.

Return by Reference

If we return address (refrence) rather than value from a function then it is called return

by reference.

#include<iostream.h>

#include<conio.h>

int& min(int &x, int &y)

{

if(x<y)

return x

else

return y;

}

void main()

{

clrscr();

int a,b,r;

cout<<”Enter two numbers”<<endl;

cin>>a>>b;

min(a,b)=0;

cout<<”a=”<<a<<endl<<”b=”<<b;

getch();

}

Here min function return the reference of the variable which is smaller between a and

b and the statement “min(a.b)=0” makes the value of the variable zero which is

smaller.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 14

 Chapter 3

Classes and Objects

Introduction

Object-oriented programming (OOP) encapsulates data (attributes) and functions

(behavior) into a single unit called classes. The data components of the class are

called data members and the function components are called member functions. The

data and functions of a class are intimately tied together. Class is a blueprint of real

world objects. A programmer can create any number of objects of the same class.

Classes have the property of information hiding. It allows data and functions to be

hidden, if necessary, from external use. Classes are also referred to as programmer-

defined data types.

Extensions to C Structure made by C ++

C++ has made following three extensions to c structure, which makes the c++

structure more powerful than C structure.

 Allows adding functions as a member of structure

 class Employee

 {

 ………………..

 ………………..

 void getdata()

 {

 }

 ………………..

 ………………..

 }

 Allows us to use the access specifiers private and public to use inside the class

class Employee

 {

 public:

 int eid,sal;

 private:

 void getdata()

 {

 //function body

 }

 ………………..

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 15

 ………………..

 }

 Allows us to use structures similar to that of primitive data types while defin

ing variables.

 struct Employee e;//C style

 Employee e; //C++ style

Complete Example:

class Employee

 {

 public:

 int eid,sal;

 private:

 void getdata()

 {

 cout<<”Enter ID and Salary of an employee”<<endl;

 cin>>eid>>sal;

 }

 Void display()

 {

 cout<<”Emp ID:”<<eid<<endl<<”Salary:”<<sal<<endl;

 }

 };

 void main()

 {

 clrscr();

 Employee e;

 e.getdata();

 cout<<”Employee Details::::”<<endl;

 e.display();

 getch();

 }

Think!!!!

What modification in above program is needed if we need to read and display records

of 10 employees?

Specifying a Class

The specification starts with the keyword class followed by the class name. Like

structure, its body is delimited by braces terminated by a semicolon. The body of the

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 16

class contains the keywords private, public, and protected (discussed later in

inheritance). Private data and functions can only be accessed from within the member

functions of that class. Public data or functions, on the other hand are accessible from

outside the class. Usually the data within a class is private and functions are public.

The data is hidden so it will be safe from accidental manipulation, while the functions

that operated on the data are public so they can be accessed from outside the class.

The class also contains any number of data items and member functions. The general

form of class declaration is:

class class_name

{

 private:

 data-type variable1;

data-type variable2;

data-type function1(argument declaration)

{

Function body

}

data-type function2(argument declaration)

{

Function body

}

…………

…………

 public:

 data-type variable3;

data-type variable4;

data-type function3(argument declaration)

{

Function body

}

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 17

data-type function4(argument declaration)

{

Function body

}

………

………

};

For example, we can declare a class for rectangles as follows:

class rectangle

{

 private:

 int length;

 int breadth;

 public:

void setdata(int l, int b)

{

 length = l;

 breadth = b;

 }

 void showdata()

{

 cout<<"Length = "<<length<<endl<<"Breadth = "<<breadth<<endl;

 }

 int findarea()

{

 return length * breadth;

 }

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 18

 int findperemeter()

{

 return 2 * length * breadth;

 }

};

Creating Objects

The class declaration does not define any objects but only specifies what they will

contain. Once a class has been declared, we can create variables (objects) of that type

by using the class name (like any other built-in type variables). For example,

rectangle r;

creates a variable (object) r of type rectangle. We can create any number of objects

from the same class. Fro example,

rectangle r1, r2, r3;

Objects can also be created when a class is defined by placing their names

immediately after the closing brace. For example,

class rectangle {

 ………

 ………

 ………

}r1, r2, r3;

Accessing Class Members

When an object of the class is created then the members are accessed using the ‘.’ dot

operator. For example,

r.setdata(4, 2);

r.showdata();

cout<<"Area = "<<r.findarea()<<endl;

cout<<"Peremeter = "<<r.findperemeter();

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 19

Private class members cannot be accessed in this way from outside of the class. For

example, if the following statements are written inside the main function, the program

generates compiler error.

r.length = length;

r1.breadth = breadth

A Complete Program

#include<iostream.h>

#include<conio.h>

class rectangle

{

 private:

 int length;

 int breadth;

 public:

void setdata(int l, int b)

{

 length = l;

 breadth = b;

 }

void showdata()

{

 cout<<"Length = "<<length<<endl

 <<"Breadth = "<<breadth<<endl;

 }

 int findarea()

{

 return length * breadth;

 }

 int findperemeter()

{

 return 2 * length * breadth;

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 20

 }

};

void main()

{

 clrscr();

 rectangle r;

 r.setdata(4, 2);

 r.showdata();

 cout<<"Area= "<<r.findarea()<<endl;

 cout<<"Peremeter= "<<r.findperemeter();

 getche();

}

Defining Member Functions Outside Of the Class

The member functions that are declared inside a class have to be defined separately

outside the class. The general form of this definition is:

return-type class-name :: function-name(argument declaration)

{

 Function body

}

The symbol :: is called the binary scope resolution operator. For example, we can

rewrite the same rectangle class as follows:

class rectangle

 {

 private:

 int length;

 int breadth;

 public:

 void setdata(int l, int b);

 void showdata();

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 21

 int findarea();

 int findperemeter();

};

void rectangle :: setdata(int l, int b)

{

 length = l;

 breadth = b;

}

void rectangle :: showdata()

{

 cout<<"Length = "<<length<<endl

 <<"Breadth = "<<breadth<<endl;

}

int rectangle :: findarea()

{

 return length * breadth;

}

int rectangle :: findperemeter()

{

 return 2 * length * breadth;

}

Functions defined outside the class are not normally inline. But a function defined

inside a class is treated as an inline function. We can define a member function

outside the class definition and still make it inline by just using the qualifier inline as

follows:

inline void rectangle :: setdata(int l, int b)

{

 length = l;

 breadth = b;

}

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 22

Note: The scope resolution operator can also be used to uncover hidden global

variable. In this case it is called unary scope resolution operator. The general form is:

:: variable-name

Example:

#include<iostream.h>

#include<conio.h>

int m = 4;

void main()

{

 clrscr();

 int m = 2;

 cout<<m<<endl;

 cout<<::m;

 getch();

}

Output:

2

4

Memory Allocation for Objects

For each object, the memory space for data members is allocated separately because

the data members will hold different data values for different objects. However, all

the objects in a given class use the same member functions. Hence, the member

functions are created and placed in memory only once when they are defined as a part

of a class specification and no separate space is allocated for member functions when

objects are created.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 23

Fig: Objects in Memory

Nesting of Member Functions

A member function can be called by using its name inside another member function

of the same class. This is known as nesting of member functions. For example, the

class below shows the nesting of member function findinterest inside the member

function findtotal.

class total

{

 private:

 float principle, time, rate;

 float findinterest()

{

 return principle * time * rate / 100;

 }

 public:

 void setdata(float p, float t, float r)

{

 principle = p;

 time = t;

 rate = r;

 }

data1

data2

data1

data2

data1

data2

function1

function2

object1 object1 object1

Common for all objects

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 24

 float findtotal()

{

 return principle + findinterest();

 }

};

Remember: Like private data member, some situations may require certain member

functions to be hidden from the outside call. In the above example, the member

function findinterest is in private block and is hidden from the outside call. A private

member function can only be called by another member function that is a member

function of its class.

Program::

WAP to add two objects of Complex class

class Complex

{

 private:

 int real,img;

 public:

 void getData()

 {

 cout<<”Enter values od real and imaginary”<<endl;

 }

 void display()

 {

 Cout<<”(“<<real<<”+i”<<img<<”)”<<endl;

 }

 void addComplex(Complex c1, Complex c2)

 {

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 25

 real=c1.real+c2.real;

 img=c1.img+c2.img;

 }

 };

void main()

{

 clrscr();

 Complex c1,c2,c3;

 c1.getdata();

 c2.getdata();

 c3.addComplex(c1,c2);

 cout<”C3=”;

 c3.display();

 getch();

}

Think!!!!!

What changes need to be done above program if we change the function call

statement as “c3=c1.addComplex(c2)”.

Static Data Members

If a data member in a class is defined as static, then only one copy of that member is

created for the entire class and is shared by all the objects of that class, no matter how

many objects are created. Hence, these data members are normally used to maintain

values common to the entire class and are also called class variables.

Example:

class rectangle

{

 private:

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 26

 int length;

 int breadth;

 static int count; //static data member

public:

 void setdata(int l, int b)

{

 length = l;

 breadth = b;

 count++;

 }

 void displaycount()

{

 cout<<count<<endl;

 }

};

int rectangle :: count;

void main()

{

 clrscr();

 rectangle r1, r2, r3;

 r1.displaycount();

 r2.displaycount();

 r3.displaycount();

 r1.setdata(15, 6);

 r2.setdata(9, 8);

 r3.setdata(12, 9);

 r1.displaycount();

 r2.displaycount();

 r3.displaycount();

 getche();

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 27

}

Output:

0

0

0

3

3

3

In this program, the static variable count is initialized to zero when the objects are

created. The count is incremented whenever data is supplied to an object. Since the

data is supplied three times, the variable count is incremented three times. Because

there is only one copy of the count shared by all the three objects, all the three calls to

the displaycount member function cause the value 3 to be displayed.

The type and scope of each static data member must be defined outside the class

definition because these data members are stored separately rather than as a part of an

object. For example, the following statement in the above program is defined outside

the class definition.

int rectangle :: count;

While defining a static variable, some initial value can also be assigned to the

variable. For example, the following definition gives count the initial value 5.

int rectangle :: count = 5;

Static Member Functions

Like static member variables, we can also have static member functions. A static

member function can have access to only other static members (functions or

variables) declared in the same class and can be called using the class name (instead

of objects) as follows:

class-name :: function-name;

Example:

class rectangle

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 28

{

 private:

 int length;

 int breadth;

 static int count;

 public:

 void setdata(int l, int b)

{

 length = l;

 breadth = b;

 count++;

 }

static void displaycount()

{

 cout<<count<<endl;

 }

};

int rectangle :: count;

void main()

{

 clrscr();

 rectangle r1, r2, r3;

 rectangle :: displaycount();

 r1.setdata(6, 5);

 r2.setdata(8, 4);

 r3.setdata(15, 7);

 rectangle :: displaycount();

 getche();

}

Output:

0

3

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 29

Another Complete Program

This program adds two distance objects each having two private data members feet

(type int) and inches (type float).

#include<iostream.h>

#include<conio.h>

class distance

{

 private:

 int feet;

 float inches;

 public:

 void setdata(int f,float i)

{

 feet=f;

 inches=i;

 }

 distance adddistance(distance d2)

 {

 distance d3;

 d3.feet = feet + d2.feet;

 d3.inches = inches + d2.inches;

 d3.feet=d3.feet + d3.inches/12;

 d3,inches=d3.inches%12;

 return d3;

 }

 void display()

{

 cout<<"("<<feet<<", "<<inches<<")"<<endl;

 }

};

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 30

void main()

{

 clrscr();

 distance d1, d2, d3;

 d1.setdata(5, 6.5);

 d2.setdata(7, 8.7);

 d3 = d1.adddistance(d2);

 cout<<"d1 = "; d1.display();

 cout<<"d2 = "; d2.display();

 cout<<"d3 = "; d3.display();

 getche();

}

Output:

d1 = (5, 6.5)

d2 = (7, 8.7)

d3 = (13, 3.2)

Objects as Function Arguments

Like any other data type, an object may be used as a function argument in three ways:

pass-by-value, pass-by-reference, and pass-by-pointer.

1. Pass-by-value: In this method, a copy of the object is passed to the function. Any

changes made to the object inside the function do not affect the object used in the

function call. For example,

distance adddistance(distance d)

{

 distance dd;

 dd.feet = feet + d.feet;

 dd.inches = inches + d.inches;

 dd.feet=dd.feet +dd.inches/12

 dd.inches=dd.inches%12;

return dd;

}

2. Pass-by-reference: In this method, an address of the object is passed to the

function. The function works directly on the actual object used in the function call.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 31

This means that any changes made to the object inside the function will reflect in the

actual object. For example,

distance adddistance(distance& d2)

{

 distance d3;

 d3.feet = feet + d2.feet;

 d3.inches = inches + d2.inches;

 d3.feet=dd.feet +dd.inches/12

 d3.inches=dd.inches%12;

return d3;

}

3. Pass-by-pointer: Like pass-by-reference method, pass-by-pointer method can also

be used to work directly on the actual object used in the function call. For example,

distance adddistance(distance* d2)

{

 distance d3;

 d3.feet = feet + d2->feet;

 d3.inches = inches + d2->inches;

 d3.feet=dd.feet +dd.inches/12

 d3.inches=dd.inches%12;

return d3;

}

This function must be called as follows:

d3 = d1.adddistance(&d2);

Returning Objects

A function cannot only receive objects as arguments but also can return them. A

function can return objects by value, by reference, and by pointer.

1. Return-by-value: In this method, a copy of the object is returned to the function

call. For example, in the following function d3 is returned by value.

distance adddistance(distance d2)

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 32

{

 distance d3;

 d3.feet = feet + d2.feet;

 d3.inches = inches + d2.inches;

 d3.feet=dd.feet +dd.inches/12

 d3.inches=dd.inches%12;

return d3;

}

2. Return-by-reference: In this method, an address of the object is returned to the

function call. We cannot return automatic variables by reference. For example, in the

following function d3 is not an automatic variable and is returned by reference.

distance& adddistance(distance d2, distance& d3)

 {

d3.feet = feet + d2.feet;

 d3.inches = inches + d2.inches;

 d3.feet=d3.feet +d3.inches/12

 d3.inches=d3.inches%12;

return d3;

}

This function must be called as follows:

d3 = d1.adddistance(d2, d3);

3. Return-by-pointer: Like return-by-reference method, return-by-pointer returns

address of the object to the function call. For example, in the following function d3 is

returned by pointer.

distance* adddistance(distance d2)

{

 distance* d3;

 d3->feet = feet + d2.feet;

 d3->inches = inches + d2.inches;

 d3.feet=dd.feet +dd.inches/12

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 33

 d3.inches=dd.inches%12;

return d3;

}

In the main function, d3 must be declared as a pointer variable and the members of d3

must be accessed as follows:

distance d1, d2, *d3;

cout<<"d3 = "; d3->display();

Note: If we declare an object as pointer variable, we must access the members of that

object by using member selection via pointer (>) operator.

const (Constant) Object and const Member Functions

Some objects need to be modified and some do not. We can use the keyword const to

specify that an object is not modifiable and that any attempt to modify the object

should result compiler error. The statement

const distance d1(5, 6.7);

declares a const object d1 of class distance and initializes it to 5 feet and 6.7 inches.

These objects must be initialized. A const object can only invoke a const member

function. If a member function does not alter any data in the class, then we may

declare and define it as a const member function as follows:

void display()const

{

 cout<<"("<<feet<<", "<<inches<<")"<<endl;

}

The qualifier const is inserted after the function’s parameter list in both declarations

and definitions. The compiler will generate an error message if such functions try to

alter the data values. A const member function cannot call a non-const member

function on the same class.

Access Modifiers

Access modifiers are constructs that defines the scope and visibility of members of a

class. There are three access modifiers:

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 34

 Private

Private members are accessible only inside the class and not from any other

location outside of the class.

 Protected

Protected members are accessible from the class as well as from the child class

but not from any other location outside of the class.

 Public

Public members are accessible from any location of the program.

class Test

{

 private:

 int x;

 public:

int y;

void getdata()

{

 cout<<”Enter x and y”<<endl;

 cin>>x>>y;

}

void display()

{

 cout<”x=”<<x<<”y=”<<y<<endl;

}

}

void main()

{

 clrscr();

 Test p;

 p.getdata();

 cout<<”Enter value of x”<<endl;

 cin>>p.x;

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 35

cout<<”Enter value of y”<<endl;

cin>>p.y;

getch();

}

Here the statement “cin>>p.x;” generates error because x is private data

member because, x is private data member and is not accessible from outside

of the class. But the statement “cin>>p.y;” does not generates error because y

is public data member and is accessible from everywhere. Thus we can say

that use of private access specifier is used to achieve data hiding in class.

Friend Functions

The concepts of data hiding and encapsulation dictate that private members of a class

cannot be accessed from outside the class, that is, non-member functions of a class

cannot access the non-public members (data members and member functions) of a

class. However, we can achieve this by using friend functions. To make an outside

function friendly to a class, we simply declare the function as a friend of the class as

shown below:

class sample

{

 int a;

 int b;

 public:

 void setvalue()

{

 a = 25;

 b = 40;

 }

 friend float mean(sample s);

};

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 36

float mean(sample s)

{

 return float(s.a + s.b)/2;

}

void main()

{

 clrscr();

 sample x;

 x.setvalue();

 cout<<"Mean value = "<<mean(x);

 getch();

}

Output:

Mean value = 32.5

Some special characteristics of friend functions are:

1. Since, it is not in the scope of the class to which it has been declared as a friend, it

cannot be called using the object of the class.

2. It can be invoked like a normal function without the help of any object.

3. Unlike member functions, it cannot access the member names directly and has to

use an object name and dot membership operator with each member name.

4. It can be declared either in the public or the private part of a class without

affecting its meaning.

5. Usually, it has the objects as arguments.

Furthermore, a fried function also acts as a bridging between two classes. For

example, if we want a function to take objects of two classes as arguments and

operate on their private members, we can inherit the two classes from the same base

class and put the function in the base class. But if the classes are unrelated, there is

nothing like a friend function. For example,

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 37

class beta;

class alpha

{

 private:

 int data;

 public:

 void setdata(int d)

{

 data = d;

 }

 friend int frifunc(alpha, beta);

};

class beta

{

 private:

 int data;

 public:

 void setdata(int d)

{

 data = d;

 }

 friend int frifunc(alpha, beta);

};

int frifunc(alpha a, beta b)

{

 return a.data + b.data;

}

void main()

{

 clrscr();

 alpha aa;

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 38

 aa.setdata(7);

 beta bb;

 bb.setdata(3);

 cout<<frifunc(aa, bb);

 getch();

}

Output:

10

Friend Classes

The member functions of a class can all be made friends of another class when we

make the former entire class a friend of later. For example,

class alpha

{

 private:

 int x;

 public:

 void setdata(int d)

{

 x = d;

 }

 friend class beta;

};

class beta

{

 public:

 void func(alpha a)

{

 cout<<a.x<<endl;

 }

};

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 39

void main()

{

 clrscr();

 alpha a;

 a.setdata(99);

 beta b;

 b.func(a);

 getch();

}

Output:

99

In the above program, in class alpha the entire class beta is declared as friend.

Hence, all the member functions of beta can access the private data of alpha.

Alternatively, we can declare beta to be a class before the alpha class specifier as

follows and then, within alpha, we can referred to beta without the class keyword as

follows:

class beta;

class alpha

{

 private:

 int x;

 public:

 void setdata(int d)

{

 x = d;

 }

 friend beta;

};

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 40

Chapter 4

Constructors and Destructors

Constructors

A constructor is a special member function that is executed automatically whenever

an object is created. It is used for automatic initialization. Automatic initialization is

the process of initializing object’s data members when it is first created, without

making a separate call to a member function. The name of the constructor is same as

the class name. For example,

class rectangle

{

 private:

 int length;

 int breadth;

 public:

 rectangle()

{ //constructor

 length = 0;

 breadth = 0;

 }

 ………

 ………

};

Some special characteristics:

Constructors have some special characteristics. These are:

1. Constructors should be defined or declared in the public section.

2. They do not have return types.

3. They cannot be inherited but a derived class can call the base class

constructor.

4. Like functions, they can have default arguments.

5. Constructors cannot be virtual.

6. We cannot refer to their addresses.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 41

7. An object with a constructor (or destructor) cannot be used as a member of a

union.

8. They make ‘implicit calls’ to the new and delete operators when a memory

allocation is required.

Types Of constructor

Default Constructor

The constructor used in this example is default constructor. A constructor that

accepts no parameters is called default constructor. If a class does not include any

constructor, the compiler supplies a default constructor. If we create an object by

using the declaration

rectangle r1;

Default constructor is invoked

Parameterized Constructors

Unlike a default constructor, a constructor may have arguments. The constructors that

take arguments are called parameterized constructors. For example, the constructor

used in the following example is the parameterized constructor and takes two

arguments both of type int.

class rectangle

{

 private:

 int length;

 int breadth;

 public:

 rectangle(int l, int b)

{ //parameterized constructor

 length = l;

 breadth = b;

 }

 ………

 ………

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 42

};

We can use parameterized constructors in two ways: by calling the constructor

explicitly and by calling the constructor implicitly (sometimes called shorthand

method). The declaration

rectangle r1 = rectangle(5, 6.7);

illustrates the first method of calling and the declaration

rectangle r1(5, 6.7);

illustrates the second method of calling.

Remember: If a class contains parameterized constructor(s), we must supply

default constructor explicitly to use it.

Copy Constructor

A copy constructor is used to declare and initialize an object with another object of

the same type. For example, the statement

rectangle r2(r1);

Creates new object r2 and performs member-by-member copy of r1 into r2. Another

form of this statement is

rectangle r2 = r1;

The process of initializing through assignment operator is known as copy

initialization. A copy constructor takes reference to an object of the same class as its

argument. For example,

rectangle(rectangle& r)

{

 lentht = r.length;

 breadth = r.breadth;

}

Remember: We cannot pass the argument by value to a copy constructor.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 43

Constructor Overloading

We can define more than one constructor in a class either with different number of

arguments or with different type of argument which is called constructor overloading.

Example:

class Item

{

 int code, price;

 public:

 Item()

 {//Default Constructor

 code= price =0;

 }

 Item(int c,int p)

 {//Parameterized Constructor

 code=c;

 price=p;

 }

 Item(Item &x)

 {//Copy Constructor

 code=x.code;

 price= x.price;

 }

 void display()

 {

 Cout<<”Code::”<<code<<endl<<”Price::”<<price<<endl;

 }

};

void main()

{

 clrscr();

 Item I1;

 Item I2(102,300);

 Item I3(I2);

 I1.display();

 I2.display();

 I3.display();

 getch();

}

Thiink!!!

What will be the output of above program

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 44

Destructors

A destructor is a special member function that is executed automatically just before

lifetime of an object is finished. A destructor has the same name as the constructor

(which is the same as the class name) but is preceded by a tilde (~). Like constructors,

destructors do not have a return value. They also take no arguments. Hence, we can

use only one destructor in a class.

The most common use of destructors is to deallocate memory that was allocated for

the object by the constructor.

Class Test

{

 private:

 int x,y;

 public:

 Test()

 {

 cout<<”Memory is allocated”<<endl;

 }

 ~Test()

{

 cout<<”Memory is deallocated”<<endl;

}

}

void main()

{

 clrscr();

{

 Test p;

 }//life time of p finishes here, and destructor is called

getch();

}

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 45

Output:

Memory is allocated

Memory is de-allocated

Whenever new operator is used to dynamically allocate memory in the constructors,

we should use delete operator to free that memory. For example,

class string

{

 private:

 char* name;

 public:

 string(char* n)

{

 int length = strlen(n);

 name = new char[length + 1];

 strcpy(name, n);

 }

 ~string()

{ //destructor

 delete[] name;

 }

 ………

 ………

};

Note: The objects are destroyed in the reverse order of creation.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 46

Chapter 5

Operator Overloading

Introduction

Operator overloading is one of the most exciting features of C++. The term operator

overloading refers to giving the normal C++ operators additional meaning so that we

can use them with user-defined data types. For example, C++ allows us to add two

variables of user-defined types with the same syntax that is applied to the basic type.

We can overload all the C++ operators except the following:

 Class member access operators (., .*)

 Scope resolution operator (::)

 Size operator (sizeof)

 Conditional operator (?:)

Although the semantics of an operator can be extended, we cannot change its syntax

and semantics that govern its use such as the number of operands, precedence, and

associativity.

Operator overloading is done with the help of a special function, called operator

function. The general form of an operator function is:

return-type operator op(arguments)

{

Function body

}

Where return-type is the type returned by the operation, operator is the keyword, and

op is the operator symbol. For example, to add two objects of type distance each

having data members feet of type int and inches of type float, we can overload +

operator as follows:

distance operator +(distance d2)

{

 //function body

}

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 47

And we can call this operator function with the same syntax that is applied to its basic

types as follows:

d3 = d1 + d2;

Note: Operator functions must be either member functions or friend functions. A

basic difference between them is that a friend function will have only one argument

for unary operators and two for binary operators, while a member function has no

argument for unary operators and only one for binary operators. This is because the

object used to invoke the member function is passed implicitly and therefore is

available for the member function. This is not the case with friend functions.

Remember: We cannot use friend functions to overload certain operators. These

operators are:

= assignment operator () function call operator

[] subscripting operator > class member access operator

Overloading Unary Operators

Let us consider the increment (++) operator. This operator increases the value of an

operand by 1 when applied to a basic data item. This operator should increase the

value of each data member when applied to an object. For example,

class rectangle

{

 private:

 int length;

 int breadth;

 public:

 rectangle(int l, int b)

{

 length = l;

 breadth = b;

 }

 void operator ++()

{

 ++length;

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 48

 ++breadth;

 }

 void display()

 {

 cout<<"Length = "<<length<<endl

 <<"Breadth = "<<breadth;

 }

};

void main()

{

 clrscr();

 rectangle r1(5, 6);

 ++r1; //r1.operator ++();

 r1.display();

 getch();

}

Output:

Length = 6

Breadth = 7

In this example, we used prefix notation. We can also use postfix notation as follows:

void operator ++(int)

{

 length++;

 breadth++;

}

This int isn’t really an argument, and it doesn’t mean integer. It is simply a signal to

the compiler to create the postfix version of the operator. We can call this operator

function as follows:

r1++;

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 49

It is also possible to overload unary operators using a friend function as follows:

class rectangle

{

 private:

 int length;

 int breadth;

 public:

 rectangle(int l, int b)

{

 length = l;

 breadth = b;

 }

 void operator ++(rectangle&);

 void display()

 {

 cout<<"Length = "<<length<<endl

 <<"Breadth = "<<breadth;

 }

};

void operator ++(rectangle& r)

{

 ++r.length;

 ++r.breadth;

 }

void main()

{

 clrscr();

 rectangle r1(5, 6);

 ++r1; //r1.operator ++();

 r1.display();

 getch();

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 50

}

Output:

Length = 6

Breadth = 7

Overloading Binary Operators

Let us consider the addition (+) operator. This operator adds the values of two

operands when applied to a basic data item. This operator should add the values of

corresponding data members when applied to two objects. For example,

class distance

{

 private:

 int feet;

 float inches;

 public:

 void getdata()

 {

 cout<<”Enter feet and inch”<<endl;

 cin>>feet>>inches;

 }

 distance operator +(distance d2)

{

 distance d3;

 d3.feet = feet + d2.feet;

 d3.inches = inches + d2.inches;

 d3.feet=d3.feet +d3.inches/12

 d3.inches=d3.inches%12;

return d3;

 }

 void display()

{

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 51

 cout<<"("<<feet<<", "<<inches<<")"<<endl;

 }

};

void main()

{

 clrscr();

 distance d1(5, 6.5), d2(7, 8.7), d3;

 d3 = d1 + d2; //d1.operator +(d2);

 cout<<"d1 = "; d1.display();

 cout<<"d2 = "; d2.display();

 cout<<"d3 = "; d3.display();

 getche();

}

Output:

d1 = (5, 6.5)

d2 = (7, 8.7)

d3 = (13, 3.2)

It is also possible to overload binary operators using a friend function as follows:

class distance

{

 private:

 int feet;

 float inches;

 public:

 void getdata()

 {

 cout<<”Enter feet and inch”<<endl;

 cin>>feet>>inches;

 }

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 52

 friend distance operator +(distance, distance);

 void display()

{

 cout<<"("<<feet<<", "<<inches<<")"<<endl;

 }

};

friend distance operator +(distance d2)

{

 distance d3;

 d3.feet = feet + d2.feet;

 d3.inches = inches + d2.inches;

 d3.feet=d3.feet +d3.inches/12

 d3.inches=d3.inches%12;

return d3;

}

void main()

{

 clrscr();

 distance d1(5, 6.5), d2(7, 8.7), d3;

 d3 = d1 + d2; //d1.operator +(d2);

 cout<<"d1 = "; d1.display();

 cout<<"d2 = "; d2.display();

 cout<<"d3 = "; d3.display();

 getche();

}

Output:

d1 = (5, 6.5)

d2 = (7, 8.7)

d3 = (13, 3.2)

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 53

Nameless Temporary Objects: We can also use nameless temporary objects to add

two distance objects whose purpose is to provide a return value for the function. For

example,

distance operator + (distance d2)

{

 int ft = feet + d2.feet;

 int in = inches + d2.inches;

 ft=ft+in/12;

 in=int%12;

 return distance(ft, in); //an unnamed temporary object

}

//Overload + operator to concatenate two strings

#include<iostream.h>

#include<string.h>

#include<conio.h>

class String

{

 char s[20];

 public:

 void getdata()

 {

 cout<<”Enter a string”<<endl;

 cin>>s;

 }

 void display()

 {

 cout<”s=”<<s<<endl;

 }

 String operator(String t)

 {

 String temp;

 strcpy(temp.s,s);

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 54

 strcat(temp.s, t.s);

 return temp;

 }

};

void main()

{

 clrscr();

String s1,s2,s3;

 s1.getdata();

 s2.getdata();

 s3=s1+s2;

 s3.display();

 getch();

}

//Overload the < operator to compare two Objects of Time Class

class Time

{

 int hr,min;

 public:

 void getdata()

 {

 cout<<”Enter hour and minute”<<endl;

 cin>>hr>>min;

 }

 void display()

 {

 cout<<hr<<” hr “<<min<<” min “<<endl;

 }

 int operator(Time t)

 {

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 55

 Time temp;

 if(hr<t.hr)

 return 1;

 else if(hr == t.hr && min< t.min)

 return 1;

 else

 return 0;

 }

};

void main()

{

 clrscr();

Time t1,t2,t3;

 t1.getdata();

 t2.getdata();

 if(t1<t2)

 {

 cout<<”t1 is smaller”<<endl;

 }

 else

 {

 cout<<”t2 is smaller”<<endl;

 }

 getch();

}

Exercises

1. Write a program to overload unary minus (-) operator to invert sign of data

members of a distance object.

2. Write a program to compare two distance objects using < and > operators.

3. Write a program to add two complex numbers using + operator.

4. Write a program to concatenate two strings using + operator.

5. Write a program to compare two strings using = = operator.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 56

Type Conversion

The type conversions are automatic as long as the data types involved are built-in

types. If the data types are user defined, the compiler does not support automatic type

conversion and therefore, we must design the conversion routines by ourselves. Three

types of situations might arise in the data conversion in this case.

1. Conversion from basic type to class type

2. Conversion from class type to basic type

3. Conversion from one class type to another class type

Conversion from basic type to class type

In this case, it is necessary to use the constructor. The constructor in this case takes

single argument whose type is to be converted. For example,

class distance

{

 private:

 int feet;

 int inch;

 public:

 distance(int f,int i)

{

 feet=f;

 inch=i;

 }

 distance(float m)

{

 feet = int(m);

 inch = 12 * (m - feet);

 }

 void display()

{

 cout<<"Feet = "<<feet<<endl <<"Inch = "<<inch;

 }

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 57

};

void main()

{

 clrscr();

 float f = 2.6;

 distance d = f;

 d.display();

 getch();

}

Output:

Feet = 2

Inches = 7

Conversion from class type to basic type

In this case, it is necessary to overload casting operator. To do this, we use conversion

function.

Example:

class distance

{

 private:

 int feet;

 int inch;

 public:

 distance(int f,int i)

{

 feet=f;

 inch=i;

 }

 operator float()

{

 float a= feet + inches/12.0;

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 58

 return a;

 }

};

void main()

{

 clrscr();

 distance d(8, 6);

 float x = (float)d;

 cout<<"x = "<<x;

 getch();

}

Output:

x = 8.5

Conversion from one class type to another class type

This type of conversion can be carried out either by a constructor or an operator

function. It depends upon where we want the routine to be located – in the source

class or in the destination class.

a. Function in the source class: In this case, it is necessary that the operator

function be placed in the source class. For example,

class distance

 {

 int feet;

 int inch;

 public:

 distance(int f, int i)

{

 feet = f;

 inch = i;

 }

 void display()

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 59

{

 cout<<"Feet = "<<feet<<endl<<"Inches = "<<inches;

 }

};

class dist {

 int meter;

 int centimeter;

 public:

 dist(int m, int c)

{

 meter = m;

 centimeter = c;

 }

 operator distance()

 {

 distance d;

 int f,i;

 f= meter*3.3.;

 i=centimeter*0.4;

 f=f+i/12;

 i=i%12;

 return distance(f,i);

 }

};

void main()

{

 clrscr();

 distance d1;

 dist d2(4,50);

 d1=d2;

 d1.display();

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 60

 getche();

}

b. Function in the destination class: In this case, it is necessary that the

constructor be placed in the destination class. This constructor is a single

argument constructor and serves as an instruction for converting the

argument’s type to the class type of which it is a member. For example,

class distance

{

 int meter;

 float centimeter;

 public:

 distance(int m, int c)

{

 meter = m;

 centimeter = c;

 }

 int getmeter()

{

 return meter;

 }

 float getcentimeter()

{

 return centimeters;

 }

};

class dist

{

 int feet;

 int inch;

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 61

 public:

 dist(int f, int i)

{

 feet = f;

 inch = i;

 }

 dist(distance d)

{

 int m,c;

 m=d.getmeter();

 c=d.getcentimeter();

 feet= m*3.3;

 inch= c*0.4;

 feet=feet+inch/12;

 inch= inch%12;

 }

 void display()

{

 cout<<"Feet = "<<feet<<endl<<"Inches = "<<inches;

 }

};

void main()

{

 clrscr();

 distance d1(6,40);

 dist d2;

 d2=d1;

 d2.display();

 getche();

}

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 62

Chapter 6

Inheritance

Introduction

Inheritance (or derivation) is the process of creating new classes, called derived

classes, from existing classes, called base classes. The derived class inherits all the

properties from the base class and can add its own properties as well. The inherited

properties may be hidden (if private in the base class) or visible (if public or protected

in the base class) in the derived class.

Inheritance uses the concept of code reusability. Once a base class is written and

debugged, we can reuse the properties of the base class in other classes by using the

concept of inheritance. Reusing existing code saves time and money and increases

program’s reliability. An important result of reusability is the ease of distributing

classes. A programmer can use a class created by another person or company, and,

without modifying it, derive other classes from it that are suited to particular

situations.

Types of Inheritance

A class can inherit properties from one or more classes and from one or more levels.

On the basis of this concept, there are five types of inheritance.

1. Single inheritance

2. Multiple Inheritance

3. Hierarchical Inheritance

4. Multilevel Inheritance

5. Hybrid Inheritance

Single Inheritance

In single inheritance, a class is derived from only one base class. The example and

figure below show this inheritance.

Example

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 63

class A

{

 members of A

};

class B : public A

{

 members of B

};

Multiple Inheritance

In this inheritance, a class is derived from more than one base class. The example and

figure below show this inheritance.

Implementation Skeleton:

class A

{

 members of A

};

class B

{

 members of B

};

class C : public A, public B

{

 members of C

};

Hierarchical Inheritance

In this type, two or more classes inherit the properties of one base class. The example

and figure below show this inheritance.

Implementation Skeleton:

class A

A

B

A B

C

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 64

{

 members of A

};

class B

{

 members of B

};

class C : public A, public B

{

 members of C

};

Multilevel Inheritance

The mechanism of deriving a class from another derived class is known as multilevel

inheritance. The process can be extended to an arbitrary number of levels. The

example and figure below show this inheritance.

Implementation Skeleton:

class A

{

 members of A

};

class B : public A

{

 members of B

};

class C : public B

{

 members of C

};

Hybrid Inheritance

This type of inheritance includes more than one type of inheritance mentioned

previously. The example and figure below show this inheritance.

B C

A

B

C

A

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 65

Example

class A

{

 members of A

};

class B : public A

{

 members of B

};

class C : public A

{

 members of C

};

class D : public B, public C

{

 members of D

};

Protected Access Specifier

If a class member is private, it can be accessed only from within the class where it

lies. However, if a class member is public, it can be accessed from within the class

and from outside the class.

A protected member, on the other hand, can be accessed from within the class where

it lies and from any class derived from this class. It can’t be accessed from outside

these classes. The table below summarizes this concept

.

D

B C

A

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 66

Access

Specifier

Accessible from

Own Class

Accessible from

Derived Class

Accessible from Objects

Outside the Class

Public Yes yes yes

protected Yes Yes no

Private Yes No no

Note: Only public and protected members are visible in the derived class.

Public, protected and private derivation

A derived class can be defined by specifying its relationship with the base class in

addition to its own details. The general form is:

class derived-class-name : visibility-mode base-class-name

{

 Members of derived classes

};

The visibility mode is optional. If present, may be private, protected, or public. The

default visibility mode is private. For example,

class ABC : [private] [protected] [public] XYZ

{

 members of ABC

};

The visibility mode specifies the visibility of inherited members. If the visibility mode

is private, public and protected members of the base class become private members in

the derived class and therefore these members can only be accessed in the derived

class. They are inaccessible from outside this derived class.

If the visibility mode is protected, both public and protected members of the base

class become protected members in the derived class and therefore these members can

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 67

only be accessed in the derived class and from any class derived from this class. They

are inaccessible from outside these classes.

If the visibility mode is public, public and protected members of the base class do

not change. The table below summarizes these concepts:

Base Class

 Visibility

Derived Class Visibility

Pubic Derivation Private Derivation Protected Derivation

Private not visible not visible not visible

protected protected Private protected

Public Public Private protected

Note: If we want to disallow the further inheritance of the members of base class

from derived class, then private derivation is used.

Derived Class Constructors

When applying inheritance we usually create objects using the derived class. If the

base class contains a constructor it can be called from the initializer list in the derived

class constructor as follows:

class A

{

 protected:

 int adata;

 public:

 A(int a)

{

 adata = a;

 }

};

class B : public A

{

 int bdata;

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 68

 public:

 B(int a, int b) : A(a)

{

 bdata = b;

 }

 void showdata()

{

 cout<<"adata = "<<adata<<endl <<"bdata = "<<bdata;

 }

};

void main()

{

 clrscr();

 B b(5, 6);

 b.showdata();

 getch();

}

Output:

adata = 5

bdata = 6

If the base class contains no constructor, we can write the derived class constructor as

follows:

B(int a, int b)

{

 adata = a;

bdata = b;

}

In case of multiple inheritance, constructors in the base classes are placed in the

initializer list in the derived class constructor separated by commas. For example,

class A

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 69

{

 protected:

 int adata;

 public:

 A(int a)

{

 adata = a;

 }

};

class B

{

 protected:

 int bdata;

 public:

 B(int b)

 {

 bdata = b;

 }

};

class C: public A, public B

{

 int cdata;

 public:

 C(int a, int b, int c) : A(a), B(b)

{

 cdata = c;

 }

};

Order of execution of constructors

The base class constructor is executed first and then the constructor in the derived

class is executed. In case of multiple inheritance, the base class constructors are

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 70

executed in the order in which they appear in the definition of the derived class.

Similarly, in a multilevel inheritance, the constructors will be executed in the order of

inheritance. Furthermore, the constructors for virtual base classes are invoked before

any non-virtual base classes. If there are multiple virtual base classes, they are

invoked in the order in which they are declared in the derived class.

Exanple:

class A

{

public:

A()

{

 cout<<”Class A Constructor”<<endl;

}

};

class B:public A

{

public:

B()

{

 cout<<”Class B Constructor”<<endl;

}

};

class C: public B

{

public:

C()

{

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 71

 cout<<”Class C Constructor”<<endl;

}

};

Output:

Class A constructor

Class B constructor

Class C constructor

Order of execution of constructors

The derived class destructor is executed first and then the destructor in the base class

is executed. In case of multiple inheritances, the derived class destructors are executed

in the order in which they appear in the definition of the derived class. Similarly, in a

multilevel inheritance, the destructors will be executed in the order of inheritance.

Example:

class A

{

public:

~A()

{

 cout<<”Class A Destructor”<<endl;

}

};

class B:public A

{

public:

~B()

{

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 72

 cout<<”Class B Destructor”<<endl;

}

};

class C: public B

{

public:

~C()

{

 cout<<”Class C Destructor”<<endl;

}

};

Output:

Class C Destructor

Class B Destructor

Class A Destructor

Overriding Member Functions

We can use member functions in a derived class that override those in the base class.

In this case, both base and derived class functions have same name, same number of

parameters, and similar type of parameters. For example,

class A

{

 public:

 void show()

{

 cout<<"This is class A";

 }

};

class B : public A

{

 public:

 void show()

{

 cout<<"This is class B"<<endl;

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 73

 }

};

void main()

{

 clrscr();

 B b;

 b.show(); //invokes the member function from class B

 b.A :: show(); //invokes the member function from class A

 getche();

}

Output:

This is class B

This is class A

Ambiguity in Multiple Inheritance

Suppose two base classes have an exactly similar member. Also, suppose a class

derived from both of these base classes has not this member. Then, if we try to access

this member from the objects of the derived class, it will be ambiguous. For example,

class A

{

 public:

 void show()

{

 cout<<"This is class A";

 }

};

class B

{

 public:

 void show()

{

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 74

 cout<<"This is class B"<<endl;

 }

};

class C : public A, public B

{

};

void main() {

 clrscr();

 C c;

 c.show(); //ambiguous – will not compile

 c.A :: show(); //OK

 c.B :: show(); //OK

 getche();

}

We can also remove this ambiguity by adding a function in class C as follows:

class C : public A, public B

{

 public:

 void show()

{

 A :: show();

 }

};

Another kind of ambiguity arises if you derive a class from two classes that are each

derived from the same class. We can remove this kind of ambiguity by using the

concept of virtual base classes.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 75

Virtual Base Classes

Consider a situation where we derive a class D from two classes B and C that are each

derived from the same class A. This creates a diamond-shaped inheritance tree(called

hybrid multipath inheritance) and all the public and protected members from class A

inherited into class D twice once through the path A→B→D and gain through the

path A→B→C . This causes ambiguity and should be avoided.

We can remove this kind of ambiguity by using the concept of virtual base class. For

this we make direct base classes (B and C) virtual base classes as follows:

class A {

 ………

};

class B : virtual public A {

 ………

};

class C : public virtual A {

 ………

};

class D : public B, public C {

 ………

};

In this case, class D inherits only one copy from the classes C and D.

Note: The keywords virtual and public may be used in either order.

Example:

class A

{

 protected:

 int adata;

};

class B : virtual public A

A

D

B C

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 76

{

};

class C : public virtual A

{

};

class D : public B, public C

{

 public:

 D(int a) {

 adata = a;

 }

 int getdata() {

 return adata;

 }

};

void main() {

 clrscr();

 D d(5);

 cout<<d.getdata();

 getch();

}

Output:

5

Containership: (Aggregation)

Inheritance is often called a “kind of” relationship. In inheritance, if a class B is

derived from a class A, we can say “B is a kind of A”. This is because B has all the

characteristics of A, and in addition some of its own. For example, we can say that

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 77

bulldog is a kind of dog: A bulldog has the characteristics shared by all dogs but has

some distinctive characteristics of its own.

There is another type of relationship, called a “has a” relationship, or containership.

We say that a bulldog has a large head, meaning that each bulldog includes an

instance of a large head. In object oriented programming, has a relationship occurs

when one object is contained in another. For example,

class Employee

{

int eid, sal;

 public:

 void getdata()

 {

 cou<<”Enter id and salary of employee”<<endl;

 cin>>eid>>sal;

 }

 void display()

 {

 cout<<”Emp ID:”<<eid<<endl<<”Salary:”<<sal;

 }

};

class Company

{

int cid, cname;

Employee e;

 public:

 void getdata()

 {

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 78

 cou<<”Enter id and name of the company:”<<endl;

 cin>>cid>>cname;

 e.getdata();

 }

 void display()

 {

 cout<<”Comp ID:”<<cid<<endl<<”Comp Name:”<<cname;

 e.display();

 }

};

void main()

{

 clrscr();

 Company c;

 c.getdata();

 c.display();

 getch();

}

Think: If Company conatins 10 employees what modification is needed in above

program?

Local Classes

Classes can also be defined and used inside a function or a block. Such classes are

called local classes. For example,

void test (int a)

{

 ………

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 79

 ………

 class A

{

 ………

 ………

};

 ………

 ………

 A a; //create object of type A

………

}

Local classes can use global variables and static variables declared inside the function

but cannot use automatic local variables. The global variables should be used with the

scope resolution operator.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 80

Chapter 7

Polymorphism

Introduction

Polymorphism means state of having many forms. We have already seen that

polymorphism is implemented using the concept of overloaded functions and

operators. In this case, polymorphism is called early binding or static binding or

static linking. This is also called compile time polymorphism because the compiler

knows the information needed to call the function at the compile time and, therefore,

compiler is able to select the appropriate function for a particular call at the compile

time itself.

There is also another kind of polymorphism called run time polymorphism. In this

type, the selection of appropriate function is done dynamically at run time. So, this is

also called late binding or dynamic binding. C++ supports a mechanism known as

virtual functions to achieve run time polymorphism. Run time polymorphism also

requires the use of pointers to objects.

Virtual Functions

Virtual means existing in appearance but not in reality. When virtual functions are

used, a program that appears to be calling a function of one class may in reality be

calling a function of a different class. Furthermore, when we use virtual functions,

different functions can be executed by the same function call. The information

regarding which function to invoke is determined at run time.

We should use virtual functions and pointers to objects to achieve run time

polymorphism. For this, we use functions having same name, same number of

parameters, and similar type of parameters in both base and derived classes. The

function in the base class is declared as virtual using the keyword virtual. When a

function in the base class is made virtual, C++ determines which function to use at run

time based on the type of object pointed by the base class pointer, rather than the type

of the pointer. For example,

class A

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 81

{

 public:

 virtual void show()

{

 cout<<"This is class A\n";

 }

};

class B : public A

{

 public:

 void show()

{

 cout<<"This is class B\n";

 }

};

class C : public A

{

 public:

 void show()

{

 cout<<"This is class C\n";

 }

};

void main() {

 clrscr();

 A *p, a;

 B b;

 C c;

 p = &b;

 a->show();

 p = &c;

 a->show();

 p = &a;

 a->show();

 getch();

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 82

}

Output:

This is class B

This is class C

This is class A

If we remove the keyword virtual from the class A, All the time show() function of class is

called because at this time function call is made on the basis of type of pointer.

Note: A base class pointer object can point to any type of derived objects but the reverse is

not true.

Abstract Classes and Pure Virtual Functions

An abstract class is one that is not used to create objects. It is used only to act as a

base class to be inherited by other classes. We can make abstract classes by placing at

least one pure virtual function in the base class. A pure virtual function is one with the

expression = 0 added to the declaration – that is, a function declared in a base class

that has no definition relative to the base class. In such cases, the compiler requires

each derived class to either define the function or redeclare it as a pure virtual

function. For example,

class A

{

 protected:

 int data;

 public:

 A(int d)

{

 data = d;

 }

 virtual void show() = 0;

};

class B : public A

{

 public:

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 83

 B(int d) : A(d)

{

 }

 void show()

{

 cout<<data<<endl;

 }

};

class C : public A {

 public:

 C(int d) : A(d)

{

 }

 void show()

{

 cout<<data;

 }

};

void main()

{

 clrscr();

 A *a; //The declaration A a; will cause error (Why?)

 B b(5);

 C c(6);

 a = &b; a->show();

 a = &c; a->show();

 getch();

}

Output:

5

6

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 84

Exceptions

Introduction

Exceptions are runtime anomalies or unusual conditions that a program may

encounter while executing. Exceptions might include conditions such as division by

zero, access to an array outside of its bounds, running out of memory or disk space,

not being able to open a file, trying to initialize an object to an impossible value etc.

When a program encounters an exceptional condition, it is important that it is

identified and dealt with effectively. C++ provides built-in language features to detect

and handle exceptions, which are basically runtime errors.

The purpose of the exception handling mechanism is to provide means to detect and

report an “exceptional circumstance” so that appropriate action can be taken. The

mechanism suggests a separate error handling code that performs the following tasks:

 Find the problem (Hit the exception).

 Inform that an error has occurred (Throw the exception).

 Receive the error information (Catch the exception).

 Take corrective action (Handle the exception).

The error handling code basically consists to two segments, one to detect errors and to

throw exceptions, and the other to catch the exceptions and to take appropriate

actions.

Exception Handling Mechanism

Exception handling mechanism in C++ is basically built upon three keywords: try,

throw, and catch. The keyword try is used to surround a block of statements, which

may generate exceptions. This block of statements is known as try block.

When an exception is detected, it is thrown using the throw statement situated either

in the try block or in functions that are invoked from within the try block. This is

called throwing an exception and the point at which the throw is executed is called

the throw point.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 85

Throw

exception

try block

Detects and throws

an exception

catch block

Catches and handles

the exception

Invoke

function

Throw

exception

Throw point

Function that causes

an exception

try block

Invokes a function that

contains an exception

catch block

Catches and handles

the exception

A catch block defined by the keyword catch catches the exception thrown by the

throw statement and handles it appropriately. This block is also called exception

handler. The catch block that catches an exception must immediately follow the try

block that throws an exception. The figure below shows the exception handling

mechanism if try block throws an exception. The general form in this case is:

The figure below shows the exception handling mechanism if function invoked by try

block throws an exception.

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 86

Examples

Example1: Try block throwing exception

#include<iostream.h>

#include<conio.h>

void main()

{

clrscr();

int a, b;

cout<<"Enter values of a & b:\n";

cin>>a>>b;

try

{

if(b == 0)

throw b;

else

cout<<"Result = "<<(float)a/b;

}

 catch(int i)

{

cout<<"Divide by zero exception: b = "<<i;

}

cout<<"\nEND”;

getch();

}

Example2: Function invoked by try block throwing exception

#include<iostream.h>

#include<conio.h>

void divide(int a, int b)

{

if(b == 0)

 throw b;

 else

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 87

 cout<<"Result = "<<(float)a/b;

}

void main()

{

clrscr();

int a, b;

cout<<"Enter values of a & b:\n";

cin>>a>>b;

 try

{

divide(a, b);

}

catch(int i)

{

cout<<"Divide by zero exception: b = "<<i;

}

cout<<"\nEND”;

getche();

}

Output:(In both examples)

First Run

Enter the values of a & b:

5

2

Result = 2.5

END

Second Run

Enter the values of a & b:

9

0

Divide by zero exception: b = 0

END

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 88

In the first example, if exception occurs in the try block, it is thrown and the program

control leaves in the try block and enters the catch block. In the second example, try

block invokes the function divide. If exception occurs in this function, it is thrown and

control leaves this function and enters the catch block.

Note that, exceptions are used to transmit information about the problem. If the type

of exception thrown matches the argument type in the catch statement, then only

catch block is executed for handling the exception. After that, control goes to the

statement immediately after the catch block. If they do not match, the program is

aborted with the help of abort() function, which is invoked by default. In this case,

statements following the catch block are not executed. When no exception is detected

and thrown, the control goes to the statement immediately after the catch block

skipping the catch block.

Throwing Mechanism

When an exception is detected, it is thrown using the throw statement in one of the

following forms:

throw(exception);

throw; //used for rethrowing an exception (discussed later)

The operand exception may be of any type (built-in and user-defined), including

constants. When an exception is thrown, the catch statement associated with the try

block will catch it. That is, the control exits the current try block, and is transferred to

the catch block after the try block. Throw point can be in a deeply nested scope within

a try block or in a deeply nested function call. In any case, control is transferred to the

catch statement.

Catching Mechanism

Code for handling exceptions is included in catch blocks. The general form of catch

block is:

catch(type arg)

{

Body of catch block

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 89

}

The type indicates the type of exception that catch block handles. The parameter arg

is optional. If it is named, it can be used in the exception handling code. The catch

statement catches an exception whose type matches with the type of catch argument.

When it is caught, the code in the catch block is executed. After its execution, the

control goes to the statement immediately following the catch block. If an exception is

not caught, abnormal program termination will occur. The catch block is simply

skipped if the catch statement does not catch an exception.

 Multiple Catch Statements: It is possible that a program segment has more than

one condition to throw an exception. In such cases, we can associate more than

one catch statement with a try as shown below:

try

{

Try block

}

catch(type1 arg)

{

 Catch block1

}

catch(type2 arg)

{

 Catch block 2

}

………

………

}

catch(typeN arg)

{

 Catch block N

}

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 90

When an exception is thrown, the exception handlers are searched in order for an

appropriate match. The first handler that yields a match is executed. After that, the

control goes to the first statement after the last catch block for that try skipping

other exception handlers. When no match is found, the program is terminated.

Note: It is possible that arguments of several catch statements match the type of

an exception. In such cases, the first handler that matches the exception type is

executed.

Example:

#include<iostream.h>

#include<conio.h>

void test(int x)

{

 try

{

 if(x == 0) throw x;

 if(x == 1) throw 1.0;

 }

catch(int m)

{

 cout<<"Caught an integer\n";

 }

catch(double d)

{

 cout<<"Caught a double";

 }

}

void main()

{

 clrscr();

 test(0);

 test(1);

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 91

 test(2);

 getche();

}

Output:

Caught an integer

Caught a double

 Catch All Exceptions: If we want to catch all possible types of exceptions in a

single catch block, we use catch in the following way:

catch(…)

{

 Statements for processing all exceptions

}

Example:

#include<iostream.h>

#include<conio.h>

void test(int x)

{

 try

{

 if(x == 0) throw x;

 if(x == 1) throw 1.0;

 }

catch(…)

{

 cout<<"Caught an exception\n";

 }

}

void main()

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 92

{

 clrscr();

 test(0);

 test(1);

 test(2);

 getche();

}

Output:

Caught an exception

Caught an exception

Rethrowing an Exception

A handler may decide to rethrow the exception caught without processing it. In such

situations, we may simply invoke throw without any arguments as shown below:

throw;

This causes the current exception to be thrown to the next enclosing try/catch

sequence and is caught by a catch statement listed after that enclosing try block. For

example,

#include<iostream.h>

#include<conio.h>

void divide(int a, int b)

{

try

{

 if(b == 0)

 throw b;

 else

 cout<<"Result = "<<(float)a/b;

 }

 catch(int)

 {

 throw;

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 93

 }

}

void main()

{

 clrscr();

 int a, b;

 cout<<"Enter values of a & b:\n";

 cin>>a>>b;

 try

{

 divide(a, b);

 }

catch(int i)

{

 cout<<"Divide by zero exception: b = "<<i;

 }

 cout<<”\nEND”;

 getch();

}

Specifying Exceptions

It is also possible to restrict a function to throw only certain specified exceptions. This

is achieved by adding a throw list clause to the function definition. The general form

is as follows:

type function(arg-list) throw (type-list)

{

 Function body

}

The type-list specifies the type of exceptions that may be thrown. Throwing any other

type of exception will cause abnormal program termination. If we wish to prevent a

function from throwing any exception, we may do so by making the type-list empty.

Hence the specification in this case will be

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 94

type function(arg-list) throw ()

{

 Function body

}

Note: A function can only be restricted in what types of exception it throws back to

the try block that called it. The restriction applies only when throwing an exception

out of the function (and not within the function).

Example:

#include<iostream.h>

#include<conio.h>

void test(int x) throw (int, double)

{

if(x == 0) throw x;

 if(x == 1) throw 1.0;

}

void main()

{

 clrscr();

 try

{

 test(1);

}

catch(int m)

{

 cout<<"Caught an integer\n";

 }

catch (double d)

{

 cout<<"Caught a double";

 }

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 95

 getch();

}

Output:

Caught a double

Chapter 8

Templates

Function templates

Function templates are special functions that can operate with generic types. This

allows us to create a function template whose functionality can be adapted to more

than one type or class without repeating the entire code for each type.

In C++ this can be achieved using template parameters. A template parameter is a

special kind of parameter that can be used to pass a type as argument: just like regular

function parameters can be used to pass values to a function, template parameters

allow to pass also types to a function. These function templates can use these

parameters as if they were any other regular type. The format for declaring function

templates with type parameters is:

template <class identifier> function_declaration;

template <typename identifier> function_declaration;

The only difference between both prototypes is the use of either the keyword class or

the keyword typename. Its use is indistinct, since both expressions have exactly the

same meaning and behave exactly the same way. For example, to create a template

function that returns the greater one of two objects we could use:

template <class Type>

myType GetMax (Type a, Type b)

{

return (a>b?a:b);

}

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 96

To use this function template we use the following format for the function call:

function_name <type> (parameters);

For example, to call GetMax to compare two integer values of type int we can write:

int x,y;

GetMax <int> (x,y);

When the compiler encounters this call to a template function, it uses the template to

automatically generate a function replacing each appearance of myType by the type

passed as the actual template parameter (int in this case) and then calls it. This process

is automatically performed by the compiler and is invisible to the programmer.

Complete Example:

// function template

#include <iostream.h>

template <class T>

T GetMax (T a, T b)

{

T result;

result = (a>b)? a : b;

return (result);

}

int main ()

{

int i=5, j=6, k;

long l=10, m=5, n;

k=GetMax<int>(i,j);

n=GetMax<long>(l,m);

cout << k << endl;

cout << n << endl;

return 0;

}

In the example above we used the function template GetMax() twice. The first time

with arguments of type int and the second one with arguments of type long. The

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 97

compiler has instantiated and then called each time the appropriate version of the

function.

As you can see, the type T is used within the GetMax() template function even to

declare new objects of that type:

T result;

Therefore, result will be an object of the same type as the parameters a and b when the

function template is instantiated with a specific type.

We can also define function templates that accept more than one type parameter,

simply by specifying more template parameters between the angle brackets. For

example:

template <class T, class U>

T GetMin (T a, U b)

{

return (a<b?a:b);

}

In this case, our function template GetMin() accepts two parameters of different types

and returns an object of the same type as the first parameter (T) that is passed. For

example, after that declaration we could call GetMin() with:

int i,j;

long l;

i = GetMin<int,long> (j,l);

Class templates

We also have the possibility to write class templates, so that a class can have members

that use template parameters as types. For example:

template <class T>

class mypair

{

T values [2];

public:

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 98

mypair (T first, T second)

{

values[0]=first; values[1]=second;

}

};

The class that we have just defined serves to store two elements of any valid type. For

example, if we wanted to declare an object of this class to store two integer values of

type int with the values 115 and 36 we would write:

mypair<int> myobject (115, 36);

This same class would also be used to create an object to store any other type:

mypair<double> myfloats (3.0, 2.18);

// class templates

#include <iostream>

template <class T>

class mypair

{

T a, b;

public:

mypair (T first, T second)

{

a=first; b=second;

}

T getmax ()

{

T retval;

retval = a>b? a : b;

return retval;

 }

};

int main ()

Downloaded from CSIT Tutor

Source: www.csitnepal.com Page 99

{

mypair <int> myobject (100, 75);

cout << myobject.getmax();

return 0;

}

Downloaded from CSIT Tutor

